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1. Introduction 

There has been a long tradition of implicitly conceptualizing language as a network, with 

linguistic theories from structuralism to construction grammar focusing on links between 

dyadic entities. Network theory has been applied to various research field and increasingly often 

to the study of language (Barabási & Pósfai, 2016). While still a relatively young method in 

linguistics, it is a promising versatile tool whose spread to other research fields can facilitate 

interdisciplinarity and follow on the tradition of implicit “networkness” of linguistic theories. 

Network science’s universal principles allow for generalizations to other disciplines such as 

psychology or computer science to study the cognitive underpinnings of language. The recent 

development of chatbots with convincing language skills raises questions of if, why, and how 

computers can understand language (Gastaldi, 2021) and if it can tell us something about how 

language works in the human mind (Vitevitch, 2008). The present study aims to contribute to 

this discussion by modelling word meaning in English with network science and recent machine 

learning techniques to examine word processing in the mental lexicon.  

2. Theoretical Background 

2.1. Network Science 

Network science applies mathematical principles to explore the structure of complex 

systems, including the internet, power grids, or language, by studying nodes and their links 

(Barabási & Pósfai, 2016). The language network science formalizes units of language as nodes 

and the relationships between them as links, but it moves beyond traditional structuralist 



frameworks like Saussure’s, which also implicitly imagined language as a network. It expands 

the idea by applying rigorous formalism used across different research fields and by focusing 

on the statistical properties of such networks. The use of network science tools allows linguists 

to conduct quantitative empirical analyses of language agnostic to the assumptions of specific 

linguistic theories. It can also be used to test hypothesis about language within a broader 

perspective of cognitive science (Vitevitch, 2008, 2019). 

Key network science measures include degree centrality, shortest path, clustering 

coefficient, and closeness centrality, quantifying properties of individual nodes and broader 

network structures. They are illustrated in table 1. 

Table 1 Summary of relevant basic network measures 

Measurement Definition Comparison between Higher and Lower Values 

Degree 

centrality 

The number of links 

of a node relative to 

the overall network 

size. 
 

 

Shortest path 

length 

The shortest route 

between two nodes 

which equals the 

number of links it 

contains. 

 
 

Clustering 

coefficient 

A measure of local 

clustering which 

signals how often 

the neighbours of a 

node tend to be 

neighbours of each 

other. 

  

Closeness 

centrality 

A measure 

signalling how close 

a node is to all other 

nodes. 
  



These measures help identify relevant network structures. For example, hubs which are 

prominent nodes that are characterised by high degree and closeness centrality. Local clustering 

within the network, being a feature of the mesoscopic level, can be described by clustering 

coefficient of specific nodes. We can compute average values of these measures across a whole 

network which shifts the view to the macroscopic level of analysis. Average values describe 

the overall features of a network. Many cognitive and social phenomena modelled with 

networks show small-world structure (SWS) (Watts & Strogatz, 1998). In general, SWS is 

characterized by short average shortest path length and high local clustering. Figure 1 contrasts 

a network with SWS and so-called scale-free network which has less local clustering and longer 

average shortest path length. Finally, the information contained in the network can be enriched 

by weighted links, which add information about the strength of connections between nodes. 

 
 

Figure 1 A comparison between small-world network and scale-free network 

2.2. Psycholinguistics and Word Processing 

Combining network science with psycholinguistics provides a robust framework for 

exploring the structure and properties of mental lexicon, a suggested network-like cognitive 

repository crucial for word processing. Word processing involves identifying and retrieving 

language units to produce or understand speech. Despite the ongoing discussion about the 

nature of language units of the mental lexicon, e.g., concepts, morphemes, words, phrases, 

syntactic rules, etc. (Aitchison, 2012), this work conceptualizes the basic units of the mental 

lexicon as words in accord with the previous practice of language network science (Vitevitch, 

2019). 



Some of the experimental designs in psycholinguistics to study word processing include 

word identification task, lexical decision task, and naming task. These tasks, adaptable to 

auditory and visual modalities, examine how different variables, like word frequency, 

imageability, length, etc., affect word processing, reflected by reaction times and accuracy rates 

of participant’s responses. For instance, word identification tasks might assess the impact of 

noise on auditory word recognition, while lexical decision tasks involve participants 

distinguishing real words from similar pseudo words. Quick and correct answer is interpreted 

as efficient word processing. 

Integrating network science with psycholinguistic studies, researchers can leverage network 

measures and analyse them as independent variables to investigate their influence on the 

dependent variables, such as reaction time that reflect word processing. This approach has 

yielded useful insights, particularly within the study of phonological networks (Vitevitch, 2019). 

The following chapter introduces the previous research combining network science with 

psycholinguistics conducted on phonological networks. 

2.3. Phonological Networks 

The use of network science in linguistics is still relatively young but notable body of 

research has been done on phonological networks, where nodes represent words linked by 

phonological similarity. In the work of Michael S. Vitevitch, this relationship is defined by 

‘substituting, adding, or deleting a single phoneme in a given word to form a “phonological 

neighbor”. For example, the words hat, cut, cap, scat, and _at were considered phonologically 

similar to the word cat’ (Vitevitch, 2008: 3). Such networks, exhibit SWS, indicated by high 

clustering coefficient, a few words functioning as hubs, and short average shortest path length 

(Vitevitch, 2008). An example of a phonological network with SWS is on figure 2 below. 



 

Figure 2 Example phonological network from Vitevitch et al. (2023) 

It contains the phonological neighbourhood of words peach and speak. There are at least three 

discernible clusters around the hub node peach. 

Vitevitch and colleagues have investigated the influence of network measures like the 

clustering coefficient on word retrieval. In a 2009 study, Chan and Vitevitch conducted two 

lexical retrieval experiments. The first experiment used a perceptual identification task where 

participants identified noise-distorted words, grouped by high and low clustering coefficient, 

with accuracy rates significantly higher in the high clustering coefficient group. The second 

experiment, a lexical decision task, required participants to distinguish real words from non-

words, showing slower response times for words with high clustering coefficient, although the 

effect size was small. 

Subsequent research, including a 2011 study by Vitevitch et al., used simulations to show 

that lower clustering coefficient led to greater activation in a phonological network, suggesting 

faster and more efficient word retrieval. This appears to contradict the slower response times 

for high-clustering words found in the earlier study, suggesting a complex role of clustering 

coefficient in word processing. These studies demonstrate that clustering coefficient and other 

network measures play role in word retrieval and processing. 

This section laid the groundwork for subsequent discussions of semantic networks, the main 

focus of this study. Ultimately, the aim is to probe if the influential network measures identified 

in phonological networks hold similar significance in semantic networks during word 

processing. At the same time, this study aims to take advantage of the recent advancement of 

machine learning and large language models (LLMs), which can represent and model language 



and meaning in unprecedented ways. The following section provides an overview of different 

kinds of semantic networks. 

2.4. Semantic Networks 

Semantic relationships conceptualized as links between word nodes in a network have been 

constructed in different ways in language network science. The main step in constructing any 

kind of network is acquiring a list of all the pairs of nodes that are linked in the network. 

Researchers have used different sources of data and methods to produce these lists.  

Some semantic networks are built on perceptual or functional word features, where links 

denote semantic proximity based on shared attributes (e.g., “is large”, “has fur”) or roles (e.g., 

“used in cooking”, “is a vehicle”). These networks are structured according to semantic feature 

norms established by researchers such as McRae et al. (2005), Vinson & Vigliocco (2008), and 

more recently Preininger, Brand & Kříž (2022). These norms are generated through 

experiments where participants list or evaluate features along certain semantic dimensions for 

specific words. For instance, in the work by Preininger, Brand, and Kříž (2022) on Czech, 

participants rated words like “pes” (dog) or “vousy” (beard) on Lickert scale assessing 

dimensions such as urbanity, femininity, positivity, etc. 

Another semantic network approach uses links based on the norms from free association 

tasks, reflecting the spontaneous connections between words experimentally elicited from 

participants. The creation of free association norms involves tasks with participants reacting to 

a cue word with their first instinctive word, a technique demonstrating reliable outcomes despite 

its spontaneous nature (Nelson, McEvoy, & Schreiber, 2004). The norms reflect the associative 

strength and context-free priming within the mental lexicon.  

Semantic-conceptual networks are based on structured lexical databases like WordNet or 

Roget’s Thesaurus which categorize words by conceptual similarities, synonymy, antonymy, 

and hierarchical super-subordinate categorizations, etc. These networks can be better 

interpreted than those based on word co-occurrences, despite being constrained by the 

theoretical and language-specific nature of the underlying databases. Figure 3 is an example of 

a visualization of such network. 1 

 
1 An example of an online tool visualizing relationships from Wordnet as a network: https://visuwords.com/ 



 

Figure 3 An example of a visualization of Wordnet's network for the word 'cat' made by Visuwords educational project 

Networks based on natural language corpora represent semantic relationships through co-

occurrence and usage pattern measures in large text corpora. This data-driven approach, using 

semantic space models and word co-occurrence measures, captures implicit semantic 

connections inferred from linguistic context. Semantic space models, analysing extensive text 

corpora, use intricate algorithms to convert words into vectors within a high-dimensional space, 

allowing semantic similarities to be deduced from the vectors’ spatial relationships (Lund & 

Burgess, 1996; Gastaldi, 2021). Cosine similarity is used to quantify the semantic distances 

between vectors. Word co-occurrence measures and semantic space models differ in their 

approach to modelling word meaning and their computational methods. Word co-occurrence 

relies on the frequency of words appearing together within a specific context, typically 

represented in matrices with frequencies or statistics like pointwise mutual information (PMI) 

(Church & Hanks, 1990). However, these matrices, constrained by their context windows, often 

overlook broader semantic relationships. Vector spaces, in contrast, abstract from narrow co-

occurrence data to capture semantic similarities even among words with potentially broader 

usage patterns. This principle has informed the development of large language models (LLMs) 

such as Word2Vec and Bidirectional Encoder Representations from Transformers (BERT), 

primarily for commercial applications, with limited use in linguistic research (Gastaldi, 2021). 

This paper aims to construct a semantic network of English using BERT, examining the impact 

of network measures, such as the clustering coefficient, on word processing.  

Before reviewing the methods and results of constructing my semantic network and 

correlating its values with the results of word retrieval experiments, the following section will 



briefly introduce and demonstrate the basics of word vectors, the main mechanism behind 

LLMs and the way in which they can represent meaning. 

2.5. Large Language Models and Word Vectors 

The introduction of machine learning techniques like Word2Vec by Mikolov et al. (2013a, 

b, c) and later BERT by Devlin et al. (2019) has significantly advanced the field of natural 

language processing (NLP) by transforming words into high-dimensional vectors based on their 

contextual usage within large text corpora. These techniques, grounded in the distributional 

hypothesis (Firth, 1957; Harris, 1954), posit that words in similar contexts have similar 

meanings, hence their relative distance in vector space. The following figures aim to 

demonstrate the different kinds of semantic relationships that word vectors can capture. 

Multidimensional word vectors are arrays of numbers assigned to words. A common way 

to visualize them is by applying dimension reducing statistical methods such as t-distributed 

stochastic neighbour embedding (t-SNE) or principal component analysis (PCA) and plotting 

them in 2D space2. Figure 4 shows such a visualization which is able to cluster together similar 

categories of words such as numerals or inflected forms of the same word. In a 2D visualization 

of word vectors, the x and y axes are abstract dimensions that represent the compressed 

information from the original high-dimensional space, with the aim of preserving the relative 

distances between words to reflect their similarities in meaning or context. The axes themselves 

do not have a specific meaning beyond this spatial representation. 

 
2 An on-line tool for visualizing 2D and 3D word vectors can be found at https://projector.tensorflow.org. 

 



 

Figure 4 T-SNE two-dimensional projection of the word2vec vectors representing a selection of the most frequent words in 

its training corpus adopted from Gastaldi (2021) 

 An interesting property of word vectors is that the relative distances between them 

appear to reflect more than just semantic similarity. A famous example by Mikolov et al. (2013) 

is analogies through “word arithmetics”. Mikolov and colleagues noticed that they could take 

a word vector for “man”, subtract it from the vector for “king”, add the vector for “woman” and 

the resulting closest vector in the vector space would be “queen”. 

1) Man – King + Woman = Queen 

Geometrically speaking, this means that the same distance and direction between pairs of 

word vectors can be interpreted as similar kind of semantic relationship, e.g. gender in example 

1. This logic is illustrated in figure 5. 



 

Figure 5 Distance and direction representing the gender relation, revealed in the vector space by a PCA projection. Adopted 

from Gastaldi (2021). 

Different kinds of mainly semantic analogies have been discovered within word vectors made 

with Word2Vec but also syntactic patterns such as verb tenses or adjectival comparatives 

plotted in figure 6 and 7. 

 

Figure 6 Pattern in the vector space (word2vec) corresponding to the comparative category (base, comparative and 

superlative forms). Adopted from Gastaldi (2021). 

 



 

Figure 7 Pattern in the vector space (word2vec) corresponding to conjugation of irregular verbs. Adopted from Gastaldi 

(2021). 

Word vectors are also able to track diachronic language change when computed on texts from 

different times. Figure 8 shows a plot from Hamilton et al. (2018) in which the development of 

the words “gay”, “broadcast”, and “awful” was studied. 

 

Figure 8 Visualization of semantic change based on word2vec. 

These examples provide evidence that word vectors can capture various kinds of semantic 

relationships from almost raw text. Figures 4 – 8 present visualizations of word vectors using 

statistical techniques that reduce the dimensions of the original vectors which also leads to loss 

of some of the information contained in them. The following section describes methods of this 

study of constructing a semantic network based on word vectors without reducing their 

dimentionality, thus conserving the full information about semantic similarity. 



3. Method and Material 

3.1. Network data 

This work integrates computational methods to produce a semantic network of English 

based on a LLM, network science to analyse it and compare it with the results from 

psycholinguistic lexical retrieval experiments. One aim is to find meaningful correlations 

between these independent sources of information to follow on the research done on 

phonological networks. Another aim is to assess the relevance of LLMs for linguistic research 

and cognitive science more broadly. The practical part of this work includes the following steps: 

1. Training BERT on a sample from The TV Corpus 

2. Outputting word vectors from BERT 

3. Creating a list of links by computing cosine similarity between every pair of word 

vectors 

4. Visualizing the network in GEPHI 

5. Obtaining reaction times from lexical retrieval experiments in MALD 

6. Correlating reaction times with network measurements 

Python programming language offers access to the open-source language model BERT via 

the transformers library. BERT is a state-of-the-art open source LLM. It can be trained on 

tokenized raw-text data to output word vectors. In this study, BERT was trained on a random 

sample of 1000 sentences from the TV Corpus, which is freely available for downloading as a 

plain text at english-corpora.org. The TV Corpus contains subtitles of tv shows from the 1950’s 

to the present time. Subtitles are a valuable source of textual data that is more similar to spoken 

language than other sources of written text. The advantage of subtitle corpora over spoken 

corpora is its greater size. 

The output of training BERT was a list of word vectors for each token. In total, there was 

9683 tokens each of which was represented by 768 dimensional vectors. To ensure a meaningful 

representation of semantic similarity between word vectors, I excluded vectors containing non-

alphabetic characters, thus eliminating punctuation, special symbols, and numbers. This 

reduced the number of word vectors to 6664. Table 2 contains a snapshot of the table with the 

filtered word vectors. 



Table 2 A part of the table containing 6664 word vectors with 768 dimension computed by BERT 

 

The first column contains word labels, the rest are values of the multidimensional vectors with 

768 dimensions. The rows are the individual words. 

Next, I calculated cosine similarity between every pair of word vectors which reflects how 

similar the vectors are based on the angle between them and the origin point of the vector space. 

The cosine similarity value ranges from -1 to 1. 1 indicates that the two vectors are identical in 

orientation. In the context of word vectors, this would mean that the two tokens are semantically 

very similar or nearly identical. 0 implies orthogonality of vectors, suggesting no semantic 

similarity between the two tokens. -1 is less common in word vectors but theoretically would 

indicate completely opposite meanings (Sidorov et al., 2014). However, interpreting these 

values can be somewhat opaque and context-dependent as there are no universally agreed-upon 

thresholds. Generally, higher values (closer to 1) indicate greater similarity. Often-used values 

for considering two vectors similar include 0.5 and 0.7 (Zhou et al., 2021). Figure 9 displays a 

histogram of the distribution of the cosine similarity values calculated between word vectors 

computed by BERT for the sample from the TV Corpus. 



 

Figure 9 Cosine similarity distribution 

It follows a normal distribution with the most common values around cosine similarity of 

0.3. As values of cosine similarity above 0.7 are very sparse, the value of 0.5 is used as the basis 

for constructing the links between the nodes in the network. Therefore, nodes in the following 

semantic network will represent tokens and a weighted link is placed between each pair where 

the value of cosine similarity is greater than 0.5. The weight of the link is always equal to the 

value of cosine similarity for the respective pair of word vectors. This method produces the 

final edge list that was used for the network construction. This list was further reduced by only 

keeping nouns (without proper names) and verbs (without abbreviated verb forms, e.g. ‘re’). 

3.2. Word Processing Data 

The final step was to include the data from lexical decision task from The Massive Auditory 

Lexical Decision (MALD) database. MALD database is a freely available auditory and 

production data set for speech and psycholinguistic research that contains time-aligned stimulus 

recordings for 26,793 words and 9592 pseudowords, and response data for 227,179 auditory 

lexical decisions from 231 unique monolingual English listeners. It is a valuable source of 

reaction times for different words from the auditory lexical decision task. The word reaction 

times from MALD database were extracted for words in the network. Reaction time values 

under 200ms and over 4000ms were excluded to avoid erroneous data and outliers. The rest of 

the reaction time values were averaged for each unique word. The final step of this study is to 

do a regression analysis of the word reaction times and network measures (closeness centrality, 

clustering coefficient, and degree centrality) to test whether there are any effects of network 



structure and measures on word processing. While the whole network contained 869 unique 

words, 237 were not in MALD database so the regression analysis was conducted on 632 unique 

words for which there is both the mean reaction time and network measures. Next section 

presents the results. 

4.  Research 

Figure 10 shows a visualization of this network produced in the network visualization 

software GEPHI. It contains a total of 869 nodes (i.e. unique words) connected by 3196 edges. 

Edge thickness reflects its weight – the thicker, the higher the cosine similarity signalling 

semantic similarity. Furthermore, node size reflects its degree, therefore; the bigger the node, 

the higher its degree is. The layout of nodes does not reflect anything. The network appears to 

have SWS with clusters of high-degree hub nodes and more scarcely connected low-degree 

nodes. 

 

Figure 10 Semantic network based on cosine similarity measures of word vectors computed by BERT from a sample of The 

TV Corpus 



Table 3 displays basic macroscopic measures of this network. 

Table 3 Relevant macro measures of the semantic network 

Mean degree 7.36 

Network diameter 11 

Mean clustering coefficient 0.15 

Mean path lengths 4.15 

Other network measures were computed for individual word nodes; namely, degree 

centrality, closeness centrality, and clustering coefficient. Figure 11 shows box plots of the 

distribution of these measures together the distribution of average word reaction times. 

 
Figure 11 Box Plots of Mean Word Reaction Time and Network Measures 

A multiple linear regression model was computed to analyse how the three network 

measures relate to the mean reaction time (MeanRT), with all variables being transformed using 

the natural logarithm. The model predicts the natural logarithm of MeanRT as a function of the 

natural logarithms of degree centrality + 1, closeness centrality + 1, and clustering coefficient 

+ 1. The “+1” in the formula ensures that there are no issues with taking logarithms of zero. 

The model suggests there may be a negative relationship between degree centrality and 

MeanRT, meaning that nodes with higher degree centrality scores tend to have lower reaction 

times, possibly indicating more efficiency or priority in word processing, but it is not 



statistically significant. The overall fit of the model is quite weak, as indicated by the low R-

squared value, meaning that other variables not included in the model might be influencing 

MeanRT. Table 4 shows summary of the regression model. 

Table 4 Summary of the regression model 

 

Added-variable plots are used to show the relationship between a given independent 

variable and the dependent variable, while accounting for the presence of other independent 

variables in the model. From these plots in figure 12, we can conclude that degree centrality 

has a slight negative impact on MeanRT, even after accounting for the other variables in the 

model. Meanwhile, closeness centrality and clustering coefficient do not seem to have a strong 

independent effect.  

 

Figure 12 Added-variable plots 



5.  Conclusion 

The results allow careful optimism for combining LLMs with network science to construct 

semantic networks for psycholinguistic research. First, the network based on semantic vectors 

from BERT had SWS which is in accord with other networks mapping cognitive and social 

phenomena. Second, degree centrality shows influence on word retrieval that approaches 

statistical significance with the results suggesting that when the number of neighbours increases, 

the reaction time decreases. It could be understood that more neighbours tend to speed up word 

processing, suggesting that mental lexicon leverages semantic vectors in a sense that it is able 

to recognize words faster when they are semantically similar to many others. Clustering 

coefficient and closeness centrality did not show a clear relationship with reaction time. 

Although the overall fit of the model was weak, work is being done on considering number of 

factors to improve it. This includes conceptualizing and calculating several control variables 

but also probing other kinds of training data for the semantic space in future semantic networks. 

This work used a sample from the TV Corpus that mimics spoken language, but other sources 

should be considered such as spoken corpora or experimentally elicited narration. 

Nevertheless, considering that psycholinguistic effects are usually influenced by many 

variables and that the present results come from independent sources of information where 

BERT is designed for commercial purposes without an aim to capture a cognitively plausible 

representation of semantic, there is a potential for their future use in linguistic research. The 

present semantic network was constructed on a sample of 1000 sentences, a relatively small 

number that might be further decreased, which makes BERT and other state-of-the-art LLMs a 

powerful tool for representing meaning with various applications. 

There is a growing body of research in both phonological (Kennet & Faust 2019) and 

semantic (Colunga & Sims 2017, de Boer et al. 2018, Hadley et al. 2019) networks that shifts 

towards more applied research, for example, of language acquisition and language impairments. 

Semantic networks capturing succinct semantic structure and its dynamics could contribute to 

the development of supplementary tools for the diagnosis of cognitive impairments that involve 

minute incremental changes in language in the early stages such as dementia or delayed 

language development. 
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